1. Analytic brancches of eigenvalues amd eigenforms

(Summary)

Suppose M^n closed smooth manifold, $f: M \to \mathbb{R}$ smooth map, g a Riemannian metric. $\Omega^q(M)$ is a Frechet space with the family of norms $|| \cdot ||_r$ provided by maximizing the first r derivatives or by the norms provided by the scalar products $(\omega, \omega')_{2r}$.

For any t the Witten Laplacian $\Delta_q^f(t) : \Omega^q(M) \to \Omega^q(M)$ is a second order formally selfadjoint operator given by

$$\Delta_q^f(t) = \Delta_q + t\mathcal{L}_q + t^2 ||grad f||^2$$

where

$$\mathcal{L}_q = L_X + L_X^\sharp,$$

X = gradf. Recall \mathcal{L}_q is order zero operator.

Suppose $M = \mathbb{R}^n$, the metric g and the Morse function f have polynomial growth to ∞ and $\Omega^q(\mathbb{R}^n)_S$, is the subspace of $\Omega^q(\mathbb{R}^n)$ consisting of q-forms whose coefficients are functions in S (i.e. rapidly decaying to infty). The scalar product (ω, ω') is well defined and $\Delta_q(f)$ leaves the space $\Omega^q(\mathbb{R}^n)_S$ invariant. Restricted to this space it is formally self adjoint and non negative. It can be regarded as an unbounded operator on the Hilbert space completion of $\Omega^q(\mathbb{R}^n)_S$.

In both cases $\Omega^q(M^n)$, for M^n closed manifold, or $\Omega^q(R^n)_S$ one has

Theorem 0.1 (*Rellich-Kato*) For any q there exists the collection of pairs of analytic maps in $t \in \mathbb{R}$ ($\lambda_{\alpha}^{q}(t) \in \mathbb{R}, \omega_{\alpha}^{q}(t) \in \Omega^{q}(M)$), with α in a countable collection of indices $\alpha \in \mathcal{A}_{q}$ called analytic branches, each having holomorphic extension to an open neighborhood of \mathbb{R} inside \mathbb{C} , such that :

- 1. $\Delta_q(t)(\omega_\alpha(t)) = \lambda_\alpha^q(t)\omega_\alpha(t), ||\omega_\alpha(t)|| = 1$ with $\lambda_\alpha(t)$ exhausting the set of all eigenvalues of $\Delta_q(t)$ with their multiplicity and $\omega_\alpha^q(t)$ forming a complete set of orthonormal eigenvectors for the Hilbert space completion of $\Omega^q(M)$, resp. of $\Omega^q(R^n)_S$.
- 2. $\lambda_{\alpha}^{q}(t_{0}) = 0$ for one t_{0} implies $\lambda_{\alpha}^{q}(t) = 0$ for all t and exactly $\dim H^{q}(M : \mathbb{R})$ resp. $\dim H^{q}(S^{n}; \mathbb{R})^{1}$ eigenbranches $\lambda_{\alpha}^{q}(t)$ which are identically zero and all other are strictly positive for any t.
- 3. It can be shown, see reference below (Haller), that $\lambda_{\alpha}^{q}(t) \leq O(t^{2})$ and $\lim_{t\to\infty} \frac{\lambda_{\alpha}^{q}}{t^{2}} = \mu_{\alpha}^{q} \in \mathbb{R}$.

2. Morse function case

Suppose that M^n is closed, $f: M \to \mathbb{R}$ is a Morse function and in the neighborhood of any critical point there exists a Morse chart with the Riemannian metric g given by $g_{i,j} = \delta_{i,j}$. Under these hypotheses the following holds.

Theorem 0.2

- 1. $\mu_{\alpha}^{q} = 0$ and either $\lim_{t\to\infty} \frac{\lambda^{q}(t)}{t} = \infty$ (cojecturally never) or $\lim_{t\to\infty} \frac{\lambda^{q}(t)}{t} = 2N, N = 0, 1, 2, \cdots$.
- 2. The set $\{\alpha \mid \lim_{t\to\infty} \frac{\lambda^q(t)}{t} = 2N\}$ is finite of specified cardinality $\mathcal{N}(n,q,N;c_0,c_1,\cdots,c_n)$ with $c_k = \sharp Cr_k(f)$ as given in reference no 4.
- 3. For each α with $\lim_{t\to\infty} \frac{\lambda^q(t)}{t} = 2N$, $\omega^q_{\alpha}(t)$ concentrates in the neighborhood of the set of critical points of index q.

 $^{{}^{1}}S^{n}$ is viewed as the one point compactification of \mathbb{R}^{n}

To derive the above one uses *Gap in the spectrum* lemma below and explicit calculations of the eigenvalues branches of eigenvalues and eigenforms for the model operators described below.

Lemma 0.3 (Gap in the spectrum) Suppose $A : H \rightsquigarrow H$ is a possibly unbounded self adjoint nonnegative operator in the Hilbert space and $a < b \ a, b \in \mathbb{R}$. Suppose that H_1, H_2 are two closed subspaces s.t. $H = H_1 \oplus H_2$ and

1. $H_1 \subset \text{Domain of A with } (Av_1, v_1) \leq a ||v_1||^2$ for $v_1 \in H_1$

2. $(Av_2, v_2) \ge b ||v_2||^2$ for $v_2 \in H_2 \cap$ Domain of A

Then $Spect A \cap (a, b) = \emptyset$

Moreover if dim H_1 is finite then $\sharp \{Spect A \cap [0, a]\} = \dim H_1$.

We apply this to $\Delta_q(t)$ or to $(1/t)\Delta_q(t)$ viewed as an unbounded selfadjoint operator on the L_2 -completion of $\Omega^q(M)$ whose domain is $\Omega^q(M)$ with H_1 defined by a finite collection of smooth q-forms and H_2 its orthogonal complement,

3.Model operator.

Consider $M^n = \mathbb{R}^n$ equipped with the metric $g_{i,j} = \delta_{i,j}$ and the smooth function $f_k := c - 1/2 \sum_{1 \le i \le k} x_i^2 + 1/2 \sum_{k+1 \le i \le n} x_i^2$ in which case

$$\Delta_q^{n,k}(t) := \Delta_q^{f_k}(t) = -\sum_{i=1}^n \frac{\partial^2}{\partial x_i^2} + t\mathcal{L}_q^{n,k} + t^2 \sum_{i=1}^n x_i^2$$

with $\mathcal{L}_q^{n,k} := L_{gradf_k} + L_{gradf_k}^{\sharp}$. Standard calculations implies that $\mathcal{L}_q^{n,k}$ is a zero-order operator with constant coefficients, hence given by a $(n,q) \times (n,q)$ square matrix with (n,q) the binomial coefficient, $(n,k) = \dim \wedge^k(\mathbb{R}^n)$.

As a second order operator on $\Omega^q(\mathbb{R}^n)_S(1/t)\Delta_q^k(t)$ is formally self adjoint with the following properties.

- 1. The eigenvalues of $\lambda_{\alpha}^{q}(t)$ of $(1/t)\Delta_{\alpha}^{k}(t)$ are constant in t, i.e. = $\lambda_{\alpha}^{q}(t) = \lambda_{\alpha}^{q} \in \text{even nonnegative interes}$
- 2. For any even integer 2N the set $\{\alpha \mid \lambda_{\alpha}^q = 2N\}$ is finite of cardinality given by a precise formula (see reference 4)
- 3. The eigenforms $\omega_{\alpha}^{q}(t)$ is a product of the type

$$\prod_{i=1,\dots,n} e^{-tx_i^2} H_r(\sqrt{t}x_i)$$

where $H_r(y)$ is the r-th Hermite polynomial, hence concentrated near the critical point of f_k which is zero.

Denote by D_l the disc of radius l in \mathbb{R}^n centered at $0 \in \mathbb{R}^n$ and for l < l' denote by $\chi_{l,l'}(t)$ the cutoff smooth function s.t. $\chi_{l,l'}(t) = \begin{cases} 1, \text{if } t \leq l \\ 0, \text{if } t > l' \end{cases}$ and by $\tilde{\omega}^q_{\alpha}(x) := \chi(|x|)\omega^q_{\alpha}(x).$

i

Explicit calculations show that the equality

$$(\Delta_q^k(t)\omega_\alpha^q(t),\omega_\alpha^q(t)) = \lambda_\alpha^q ||\omega_\alpha^q(t)||^2$$

implies that for 0 < l < l' and $\epsilon \in (0, 1)$ there exists T depending on l, l' and ϵ such that for t > T one has

$$(\Delta_q^k(t)\tilde{\omega}_{\alpha}^q(t),\tilde{\omega}_{\alpha}^q(t)) \le (\lambda_{\alpha}^q + e^{-t^{\epsilon}})||\tilde{\omega}_{\alpha}^q(t)||^2$$

and

$$(\Delta_q^k(t)\tilde{\omega}_{\alpha}^q(t),\tilde{\omega}_{\alpha}^q(t)) \ge (\lambda_{\alpha}^q - t^{-\epsilon})||\tilde{\omega}_{\alpha}^q(t)||^2.$$

For a Morse function $f: M \to \mathbb{R}$ one reffers to $\bigoplus_{x \in Cr(f)} \Delta_q^{k(x)}(t), k(x) = indexx$, on the Frechet space $\bigoplus_{x \in Cr(f)} \Omega^q(\mathbb{R}^n)_S$ as the model operator of the Morse function f.

Ideea of the proof of Theorem 0.2

consists in comparing the spectral package of $\Delta_q(t)$ (= branches of eigenvalues and eigenforms) to the spectral package of the model operator of the Morse function f.